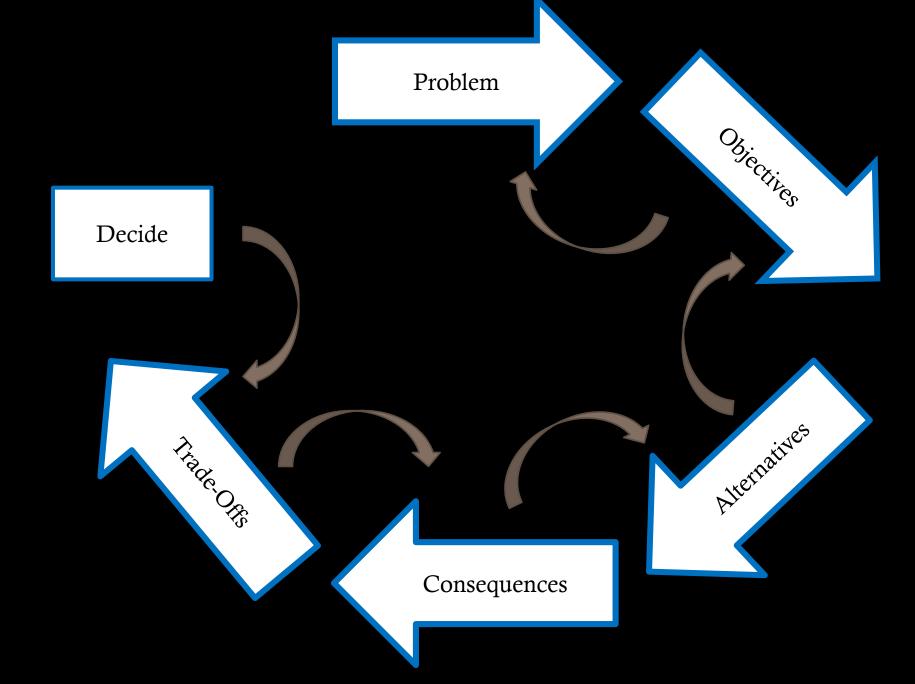
Guiding Coordinated Bird Monitoring Decisions Through Structured Decision Making

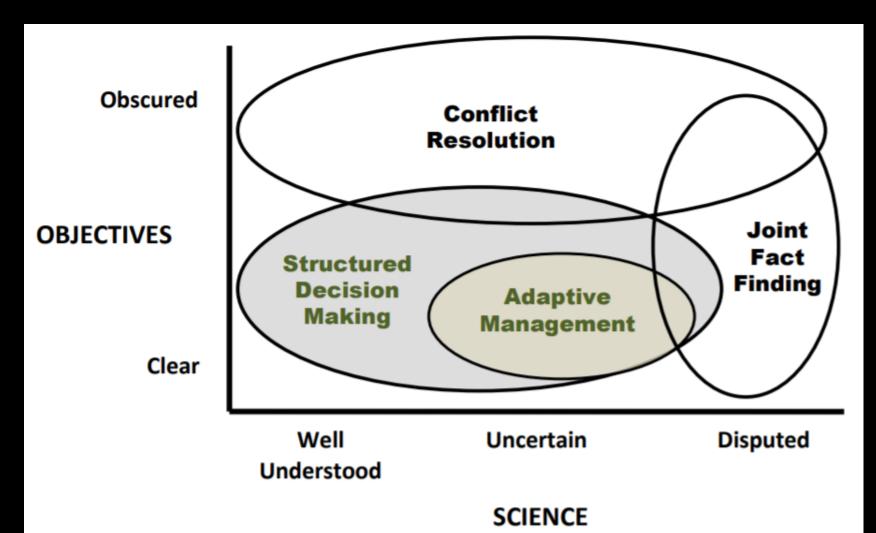
Auriel Fournier, James Lyons, Evan Adams, Janell Brush, Robert Cooper, Steve DeMaso, Melanie Driscoll, Peter Frederick, Jeff Gleason, Randy Wilson, John Tirpak, Mark Woodrey



@RallidaeRule #GulfMxBirds

PrOACT

Problem Objectives Alternatives Consequences Tradeoffs



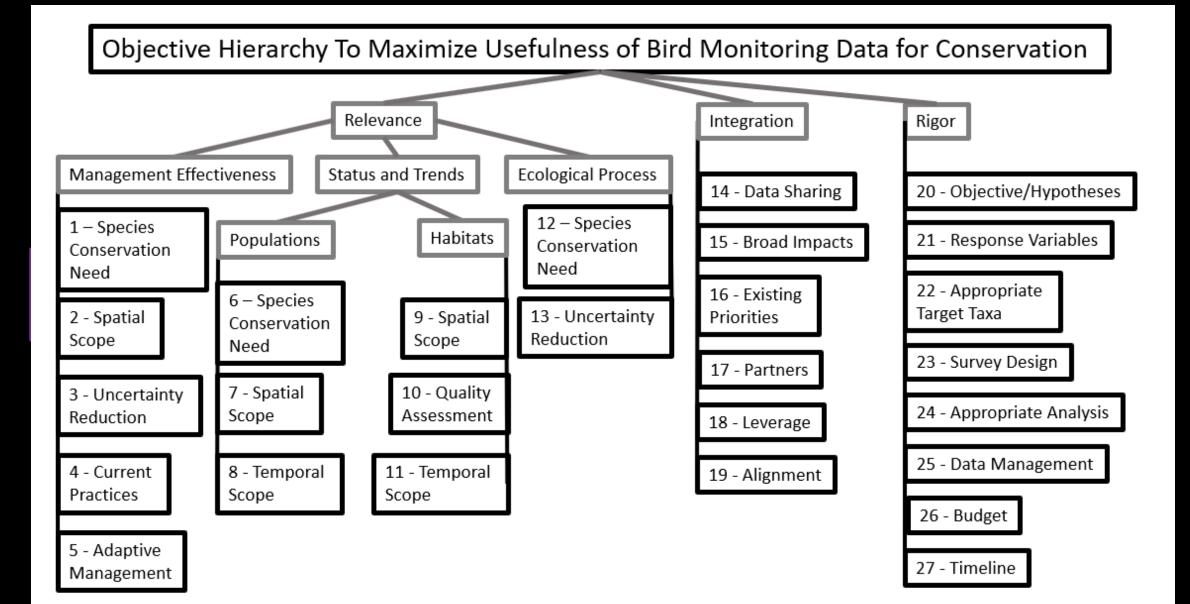
What is Decision Science?

Eliminates Mental Shortcuts

Allows for a variety of values

Unites stakeholders around a common objective

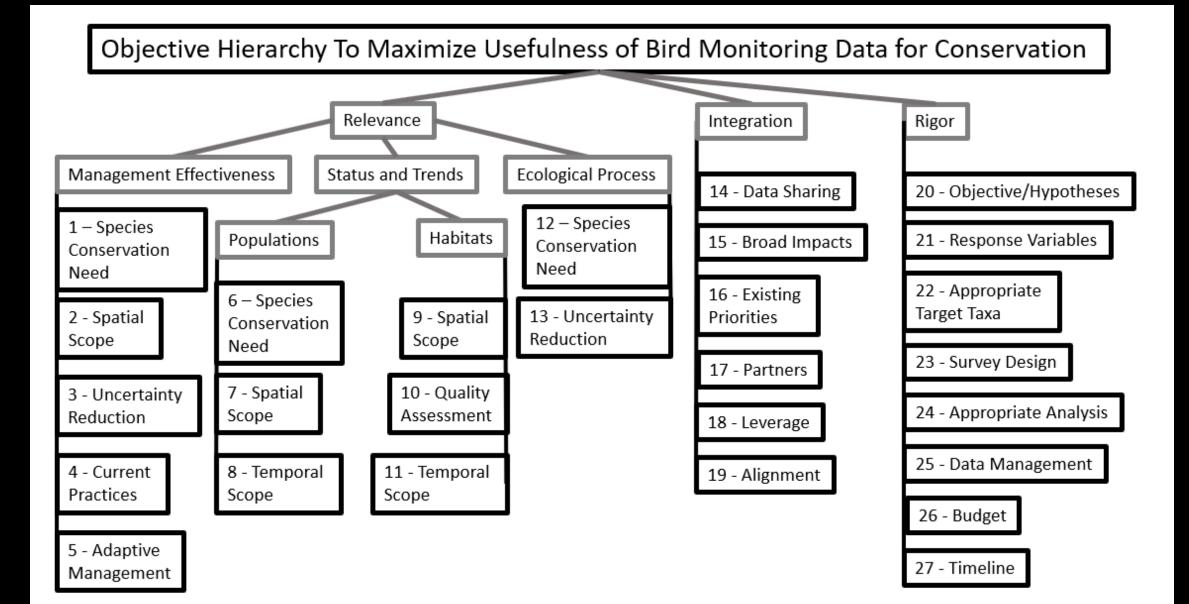
PrOACT - Problem


A disjointed and inefficient bird monitoring system that fails to address many complexities and interactions

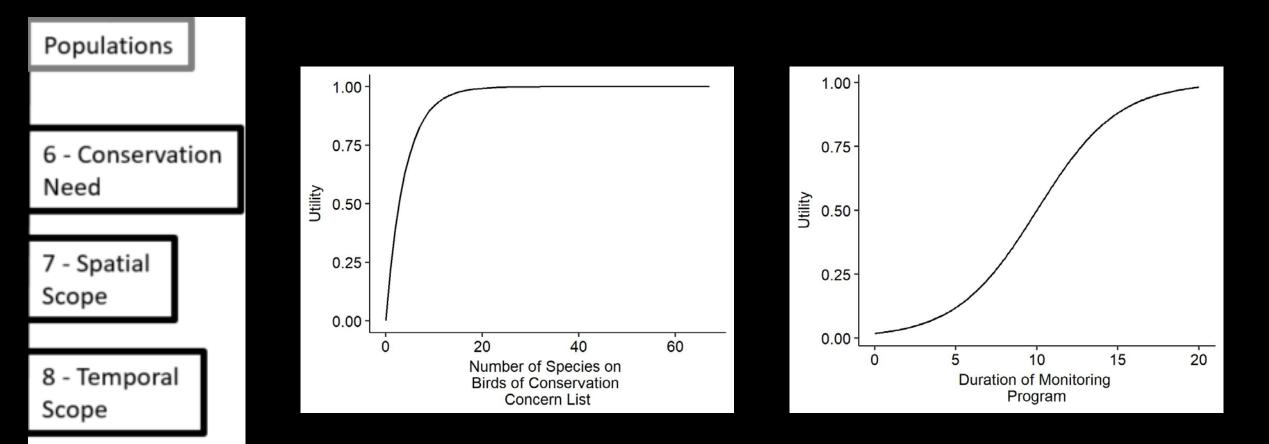
>500 species of birds

Multiple Stressors

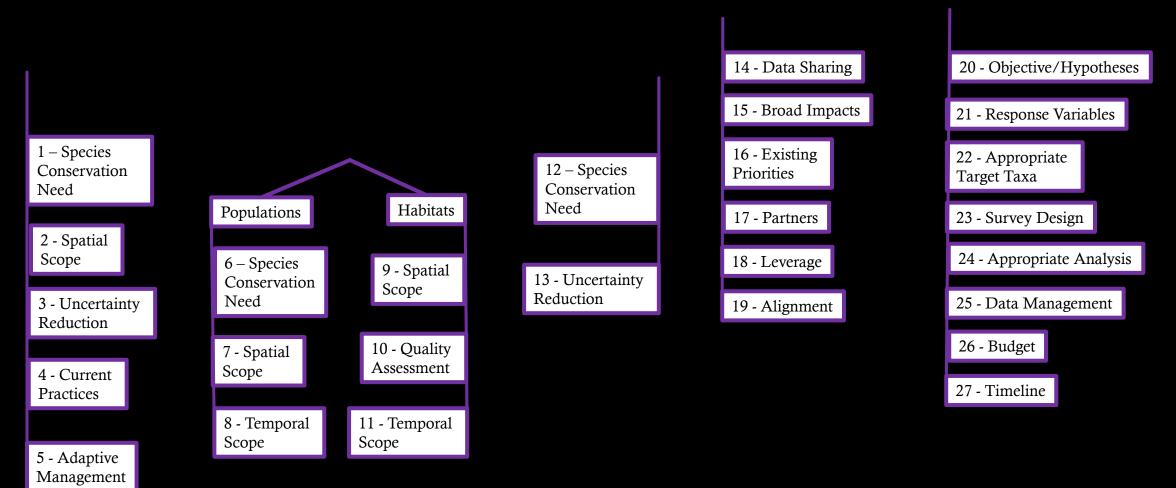
Multiple Complementary Restoration Opportunities


Two Applications of Decision Science

Portfolio Selection Tool Funding Decision Maker choosing among alternative proposals/projects


Monitoring Plan

Choosing among priorities for the next 5 years



How we measure what we value

PrOACT - Consequences

 $\sum [\text{Utility Score x weight}] = \text{Conservation Benefit Score}$ (0-1) (0-1) (0-1)

PrOACT – Tradeoffs

A randomly generated proposals (rows)

Each proposal has a cost and a benefit score

LS	Benefit Score					
COS	ene co	C	Gulf C	loast St	ates	
0	B					
150000	0.28	0	1	0	0	0
220000	0.32	0	0	1	0	1
110000	0.18	1	1	0	0	0
1000000	0.50	1	1	1	1	1
5000000	0.50	0	0	0	1	0
25000	0.40	1	1	1	1	1
900000	0.32	1	0	0	0	0
1500000	0.39	1	1	1	1	1
100000	0.30	0	1	0	0	0
10000	0.27	0	0	0	0	0
250000	0.22	0	0	0	1	1
500000	0.37	0	0	1	1	0
800000	0.42	1	1	1	1	1
2000000	0.43	1	1	1	1	1
500000	0.34	0	0	1	1	0
300000	0.33	1	1	1	1	1
750000	0.32	1	1	1	1	1
1500000	0.44	1	1	1	1	1
900000	0.34	1	1	1	1	1
750000	0.33	1	1	1	1	1
1000000	0.30	1	1	1	1	1
150000	0.34	1	1	1	1	1
250000	0.44	1	1	1	0	0
500000	0.37	0	0	1	1	1
1200000	0.26	1	1	1	1	1
500000	0.39	0	1	0	0	0
2000000	0.41	1	1	1	1	1
250000	0.27	0	1	0	0	0
650000	0.28	1	1	1	0	0
200000	0.42	0	0	0	1	1
400000	0.36	1	1	1	1	1
900000	0.37	1	1	1	1	1
	0.36	1	1	1	1	1

Set Constraints

- Cost
- Balance of habitats
- X projects on private land
- Includes capacity building of Y skill set
- Z endangered species

senefit Score COST

Gulf Coast States

	Щ					
150000	0.28	0	1	0	0	0
220000	0.32	0	0	1	0	1
110000	0.18	1	1	0	0	0
1000000	0.50	1	1	1	1	1
5000000	0.50	0	0	0	1	0
25000	0.40	1	1	1	1	1
900000	0.32	1	0	0	0	0
1500000	0.39	1	1	1	1	1
100000	0.30	0	1	0	0	0
10000	0.27	0	0	0	0	0
250000	0.22	0	0	0	1	1
500000	0.37	0	0	1	1	0
800000	0.42	1	1	1	1	1
2000000	0.43	1	1	1	1	1
500000	0.34	0	0	1	1	0
300000	0.33	1	1	1	1	1
750000	0.32	1	1	1	1	1
1500000	0.44	1	1	1	1	1
900000	0.34	1	1	1	1	1
750000	0.33	1	1	1	1	1
1000000	0.30	1	1	1	1	1
150000	0.34	1	1	1	1	1
250000	0.44	1	1	1	0	0
500000	0.37	0	0	1	1	1
1200000	0.26	1	1	1	1	1
500000	0.39	0	1	0	0	0
2000000	0.41	1	1	1	1	1
250000	0.27	0	1	0	0	0
650000	0.28	1	1	1	0	0
200000	0.42	0	0	0	1	1
400000	0.36	1	1	1	1	1
900000	0.37	1	1	1	1	1
900000	0.36	1	1	1	1	1

But how is the decision made?

- Set budget (1.45 million)
- Set state constraints (3 in each state)
- Run Optimization

enefit core **USO**

Gulf Coast States

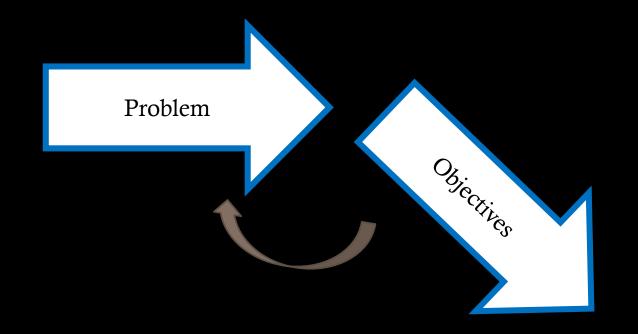
\cup	B					
150000	0.28	0	1	0	0	0
220000	0.32	0	0	1	0	1
110000	0.18	1	1	0	0	0
1000000	0.50	1	1	1	1	1
5000000	0.50	0	0	0	1	0
25000	0.40	1	1	1	1	1
900000	0.32	1	0	0	0	0
1500000	0.39	1	1	1	1	1
100000	0.30	0	1	0	0	0
10000	0.27	0	0	0	0	0
250000	0.22	0	0	0	1	1
500000	0.37	0	0	1	1	0
800000	0.42	1	1	1	1	1
2000000	0.43	1	1	1	1	1
500000	0.34	0	0	1	1	0
300000	0.33	1	1	1	1	1
750000	0.32	1	1	1	1	1
1500000	0.44	1	1	1	1	1
900000	0.34	1	1	1	1	1
750000	0.33	1	1	1	1	1
1000000	0.30	1	1	1	1	1
150000	0.34	1	1	1	1	1
250000	0.44	1	1	1	0	0
500000	0.37	0	0	1	1	1
1200000	0.26	1	1	1	1	1
500000	0.39	0	1	0	0	0
2000000	0.41	1	1	1	1	1
250000	0.27	0	1	0	0	0
650000	0.28	1	1	1	0	0
200000	0.42	0	0	0	1	1
400000	0.36	1	1	1	1	1
900000	0.37	1	1	1	1	1
900000	0.36	1	1	1	1	1

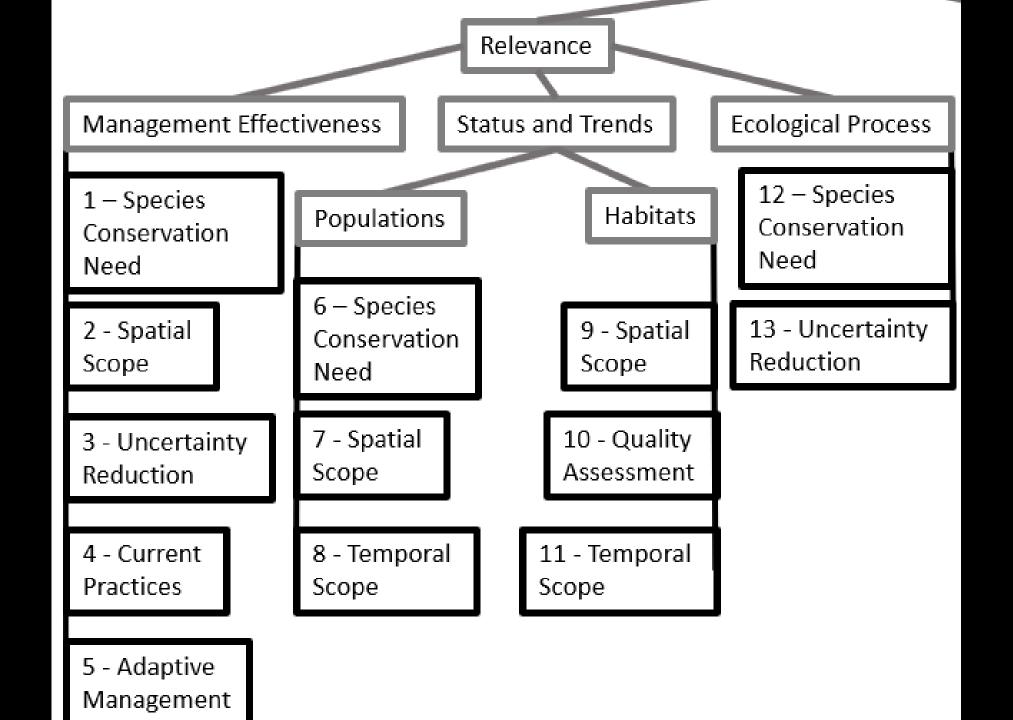
Portfolio Decision Support Tool Application

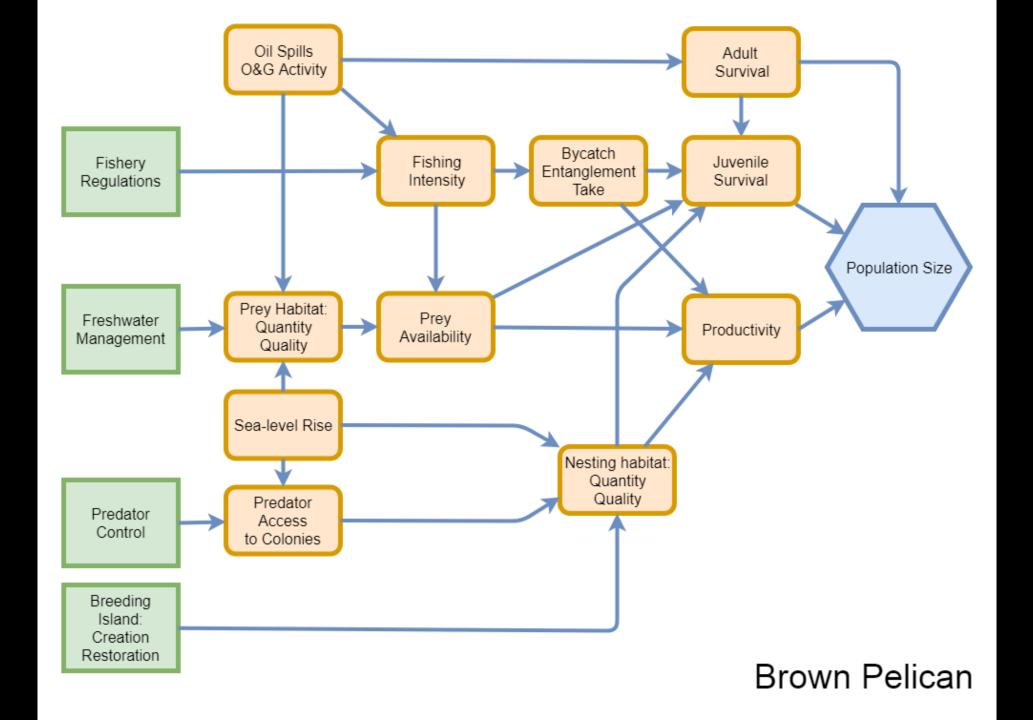
This does not tie funding decision maker's hands, but helps them compare a large number of alternatives without taking mental shortcuts

Available in USGS Open File Report by end of 2018 (check gomamn.org)

Monitoring Plan – Setting Priorities


Use the community's values to set priorities for seven taxonomic groups


- Seabirds
- Shorebirds
- Marshbirds
- Landbirds
- Raptors
- Waterfowl
- Wadingbirds



PrO

Problem Objectives

How to Prioritize

		Effect Size			
		Low	High	Unknown	
Uncertainty	Low	5	3	2	
	High	4	1	2	

Gulf of Mexico Avian Monitoring Plan

Setting Priorities For Each Taxonomic Group

- Management Actions
- Ecological Process
- Status and Trends

Connecting these with metrics

- Avian Covariates
- Non-Avian Covariates

Guidelines for Collaboration & Integration

Gulf of Mexico Avian Monitoring Plan

Available Early 2019

Updated Every 5 Years

As we learn more, our priorities can shift, and our values will continue to inform those priorities

Decision Science Can Be Used Two Ways To Coordinated and Integrate Regional Monitoring Efforts

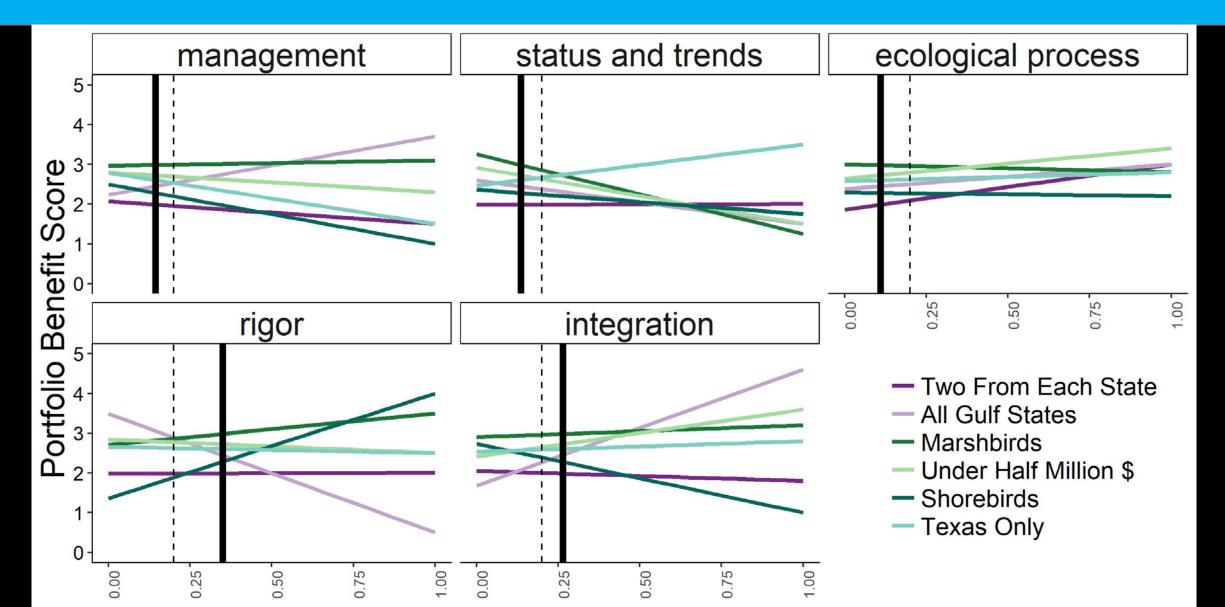
- Select Among Projects
- Setting Priorities

gettyimages Planet Observer/UIG

Thanks!!

National Fish and Wildlife Foundation

GoMAMN.org


aurielfournier@gmail.com

GoMAMN Community of Practice

@RallidaeRule #GulfMxBirds

Sensitivity Analysis

